

Cambridge International AS & A Level

CANDIDATE
NAME

--	--	--	--	--

CENTRE
NUMBER

--	--	--	--	--

CANDIDATE
NUMBER

--	--	--	--

CHEMISTRY**9701/23**

Paper 2 AS Level Structured Questions

May/June 2023**1 hour 15 minutes**

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer **all** questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.

This document has **20** pages. Any blank pages are indicated.

1 Copper is used in electrical equipment. It has a melting point of 1085 °C.

(a) (i) Identify the lattice structure of copper.

..... [1]

(ii) Draw a labelled diagram to show the bonding present in copper.

[1]

(b) The relative isotopic masses and natural abundances of the two isotopes in a sample of copper are shown in Table 1.1.

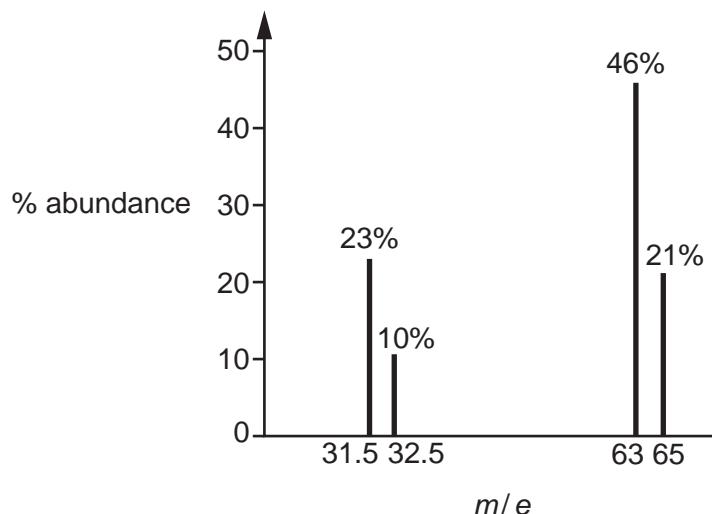
Table 1.1

isotope	relative isotopic mass	% abundance
^{63}Cu	62.930	69.15
^{65}Cu	64.928	30.85

(i) Define the unified atomic mass unit.

..... [1]

(ii) Define relative atomic mass, A_r , in terms of the unified atomic mass unit.


..... [1]

(iii) Calculate the relative atomic mass, A_r , of copper in this sample using the data in Table 1.1.

Show your working.

$$A_r = \dots \quad [1]$$

(c) The mass spectrum of a sample of pure copper is shown in Fig. 1.1.

Fig. 1.1

Identify the ion with an abundance of 23% in the sample.

..... [1]

(d) When KI(aq) is added to $\text{CuSO}_4\text{(aq)}$ the blue-coloured solution turns brown and a white precipitate of CuI(s) is seen.

The reaction between copper ions and iodide forms only two products.

(i) Complete the equation for this reaction.

[1]

(ii) Identify the oxidising agent in this reaction. Explain your answer in terms of electron transfer.

.....
..... [1]

(iii) State the full electronic configuration of Cu^{2+} .

..... [1]

[Total: 9]

2 (a) The reaction of pure aluminium is only observed if the aluminium oxide layer is removed first. When pure aluminium is added to cold water, bubbles of gas are seen.

(i) State **one** property of aluminium oxide that explains why an aluminium object does **not** react with cold water until the aluminium oxide layer is removed.

..... [1]

(ii) Write an equation, with state symbols, for the reaction of aluminium oxide with an excess of $\text{NaOH}(\text{aq})$.

..... [2]

(iii) Name **one** other Period 3 element that also produces bubbles of gas when added to cold water.

..... [1]

(b) Aluminium nitrate is a white soluble salt. On heating aluminium nitrate, thermal decomposition occurs and a brown gas is seen.

State the formula of the salt of another element in Period 3 which also decomposes on heating to produce a brown gas.

..... [1]

(c) Aluminium chloride and phosphorus chloride are both white solids.

(i) State the maximum oxidation number of aluminium and of phosphorus in these solid chloride salts.

maximum oxidation number of aluminium

maximum oxidation number of phosphorus

[1]

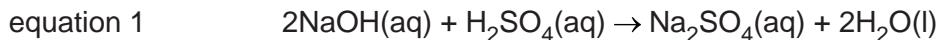
(ii) State why the maximum oxidation number of aluminium is different from that of phosphorus.

.....
..... [1]

(iii) Write an equation for the reaction of solid phosphorus chloride and excess water.

..... [1]

(iv) Name the type of reaction that occurs when aluminium chloride is added to water.


..... [1]

(v) Explain why the solution produced after aluminium chloride is added to water has a pH of 1–2.

..... [1]

[Total: 10]

3 A neutralisation reaction occurs when $\text{NaOH}(\text{aq})$ is added to $\text{H}_2\text{SO}_4(\text{aq})$.

(a) Define enthalpy change of neutralisation, ΔH_{neut} .

.....
.....
.....

[2]

(b) In an experiment, 50.0 cm^3 of 2.00 mol dm^{-3} $\text{NaOH}(\text{aq})$ is added to 60.0 cm^3 of 1.00 mol dm^{-3} $\text{H}_2\text{SO}_4(\text{aq})$ in a polystyrene cup and stirred. Both solutions have a temperature of $21.4\text{ }^\circ\text{C}$ before mixing. The maximum temperature of the mixture is measured.

(i) Use equation 1 to calculate the amount, in mol, of $\text{H}_2\text{SO}_4(\text{aq})$ that is neutralised in the experiment.

amount of H_2SO_4 neutralised = mol [1]

(ii) Calculate the theoretical maximum temperature of the mixture in this experiment.

Assume that:

- enthalpy change of neutralisation, ΔH_{neut} , of $\text{NaOH}(\text{aq})$ and $\text{H}_2\text{SO}_4(\text{aq})$ is -57.1 kJ mol^{-1}
- full dissociation of $\text{H}_2\text{SO}_4(\text{aq})$ occurs
- the specific heat capacity of the final solution is $4.18\text{ J g}^{-1}\text{ K}^{-1}$
- 1.00 cm^3 of the final solution has a mass of 1.00 g
- there is no heat loss to the surroundings
- the experiment takes place at constant pressure.

Show your working.

theoretical maximum temperature = $^\circ\text{C}$ [3]

(c) The enthalpy change of neutralisation of CH_3COOH (aq) and NaOH (aq) is $-55.2 \text{ kJ mol}^{-1}$.

(i) Complete the equation for the reaction.

(ii) Values for the enthalpy change of neutralisation, ΔH_{neut} , are shown in Table 3.1.

Table 3.1

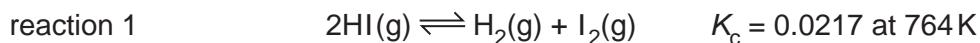
reagents	$\Delta H_{\text{neut}} / \text{kJ mol}^{-1}$
$\text{NaOH} + \text{HCl}$	-57.1
$\text{NaOH} + \text{CH}_3\text{COOH}$	-55.2

Suggest why the value for ΔH_{neut} of the weak acid, CH_3COOH , reacting with NaOH is different to the value obtained using the strong acid, HCl . Assume that the values are determined under the same conditions.

..... [1]

[Total: 8]

4 (a) Hydrogen chloride gas is made in the laboratory by adding concentrated sulfuric acid to potassium chloride.


(i) Construct an equation for this reaction.

..... [1]

(ii) Explain why hydrogen iodide is **not** prepared by adding concentrated sulfuric acid to sodium iodide.

.....
..... [2]

(b) A sample of HI(g) is added to a 2.00dm^3 sealed vessel at 764K and allowed to reach equilibrium.

At equilibrium the mixture contains 1.70mol of HI(g) .

(i) State **one** difference in the appearance of the initial reaction mixture compared to the mixture at equilibrium.

..... [1]

(ii) Deduce the expression for equilibrium constant K_c for reaction 1.

$$K_c =$$

[1]

(iii) Calculate the concentration of I_2 present in the reaction mixture at equilibrium.
Show your working.

$$\text{concentration of } \text{I}_2 = \dots \text{ mol dm}^{-3} \quad [3]$$

(c) The experiment is repeated at 500 K. The value of K_c under these conditions is 0.00625.

(i) Describe the difference in the composition of the equilibrium mixture at 500 K compared to 764 K.

.....
.....

[1]

(ii) Use Le Chatelier's principle to deduce whether the decomposition of HI(g) is endothermic or exothermic. Explain your answer.

.....
.....
.....

[1]

[Total: 10]

10

5 Y is formed from X in a single-step reaction, as shown in Fig. 5.1.

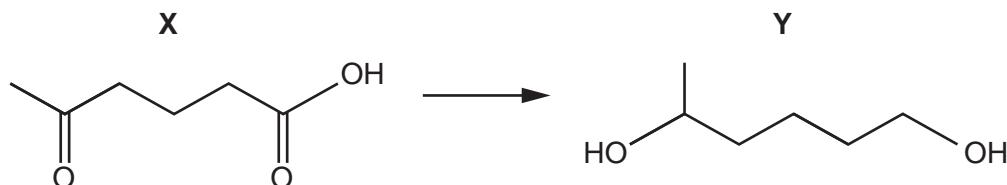


Fig. 5.1

(a) Deduce the empirical formula of Y.

..... [1]

(b) The formation of Y from X requires the addition of a suitable reducing agent.

(i) Construct an equation using molecular formulae and [H] for the reaction in Fig. 5.1. Use [H] to represent one atom of hydrogen from the reducing agent.

..... [1]

(ii) Identify a suitable non-gaseous reducing agent for the formation of Y from X.

..... [1]

(c) Complete Table 5.1 to show the number of sp^2 and sp^3 hybridised carbon atoms in a molecule of X.

Table 5.1

type of hybridisation	sp^2	sp^3
number of carbon atoms in X		

[2]

(d) Complete Table 5.2 with the expected observations that occur when the reagents shown are added to separate solutions of **X** and **Y**. Do **not** refer to temperature changes in your answer.

Table 5.2

reagent	observation on addition to X	observation on addition to Y
aqueous sodium carbonate		
2,4-dinitrophenylhydrazine (2,4-DNPH reagent)		
alkaline aqueous iodine		

[3]

[Total: 8]

6 Compound **W**, $\text{CH}_2=\text{CHCN}$, is used to make an addition polymer which is present in carbon fibres.

(a) Draw **one** repeat unit of the addition polymer of **W**.

[1]

(b) CH_3CHO is used in a two-step synthetic route to form **W**, as shown in Fig. 6.1.
In step 1, CH_3CHO is heated with HCN in the presence of KCN.

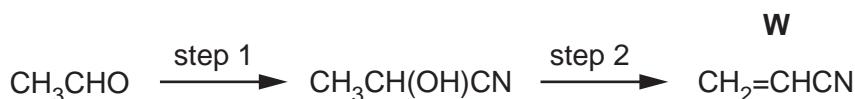
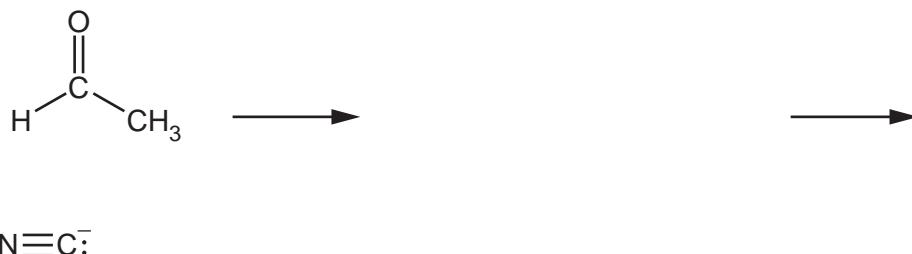


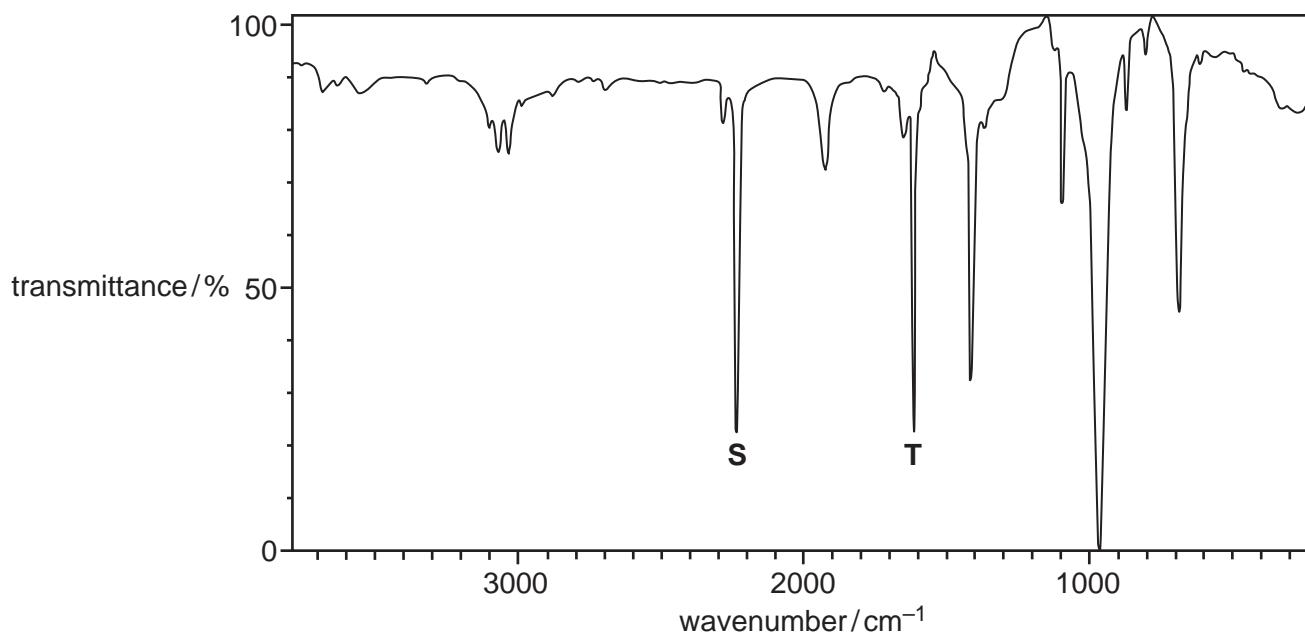
Fig. 6.1

(i) Name the mechanism for the reaction in step 1 in Fig. 6.1.

..... [1]

(ii) Complete Fig. 6.2 to show the mechanism for the reaction in step 1.
Include all products, charges, dipoles, lone pairs of electrons and curly arrows, as appropriate.




Fig. 6.2

[3]

(iii) Suggest a suitable reagent and conditions for step 2 in Fig. 6.1.

..... [1]

(iv) Fig. 6.3 shows the infrared spectrum of **W**, $\text{CH}_2=\text{CHCN}$.

Fig. 6.3

Table 6.1

bond	functional groups containing the bond	characteristic infrared absorption range (in wavenumbers) / cm^{-1}
C–O	hydroxy, ester	1040–1300
C=C	aromatic compound, alkene	1500–1680
C=O	amide carbonyl, carboxyl ester	1640–1690 1670–1740 1710–1750
C≡N	nitrile	2200–2250
C–H	alkane	2850–2950
N–H	amine, amide	3300–3500
O–H	carboxyl hydroxy	2500–3000 3200–3600

Use Table 6.1 to identify the bonds responsible for the absorptions marked **S** and **T** on Fig. 6.3.

S

T

[1]

(c) Molecules of **W**, $\text{CH}_2=\text{CHCN}$, do **not** show stereoisomerism.

(i) Describe stereoisomerism.

..... [1]

(ii) Describe the **two** essential features of an alkene molecule that cause it to show geometrical stereoisomerism.

..... [2]

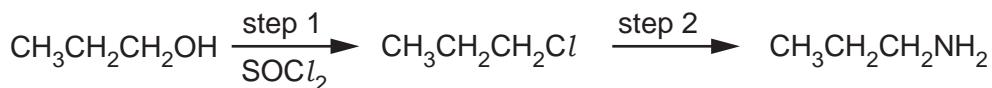
(d) Molecules of $\text{CH}_3\text{CH}(\text{OH})\text{CN}$ exist as a pair of optical isomers.

Draw three-dimensional diagrams in the boxes to show the optical isomers of $\text{CH}_3\text{CH}(\text{OH})\text{CN}$.

isomer 1

isomer 2

[1]


(e) Propanenitrile is heated with hydrogen gas and a platinum catalyst. The only product is propylamine.

Construct an equation for this reaction.

..... [1]

15

(f) Propylamine can also be formed in a two-step synthesis from propan-1-ol, as shown in Fig. 6.4.

Fig. 6.4

(i) Name the type of reaction in step 1 in Fig. 6.4.

..... [1]

(ii) Identify the reagent and conditions for step 2 in Fig. 6.4.

..... [2]

[Total: 15]

Important values, constants and standards

molar gas constant	$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \text{ C mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \text{ mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \text{ C}$
molar volume of gas	$V_m = 22.4 \text{ dm}^3 \text{ mol}^{-1}$ at s.t.p. (101 kPa and 273 K) $V_m = 24.0 \text{ dm}^3 \text{ mol}^{-1}$ at room conditions
ionic product of water	$K_w = 1.00 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$ (at 298 K (25 °C))
specific heat capacity of water	$c = 4.18 \text{ kJ kg}^{-1} \text{ K}^{-1}$ (4.18 J g ⁻¹ K ⁻¹)

The Periodic Table of Elements

1		2		Group																																	
13		14		15		16		17		18																											
Key		1		H																																	
3	Li	4	Be	5	B	6	C	7	N	8	O	9	F	10	Ne																						
lithium	6.9	beryllium	9.0	boron	10.8	carbon	12.0	nitrogen	14.0	oxygen	16.0	fluorine	19.0		neon	20.2																					
11	Na	12	Mg	13	Al	14	Si	15	P	16	S	17	Cl	18	Ar																						
sodium	23.0	magnesium	24.3	aluminum	27.0	silicon	28.1	phosphorus	31.0	sulfur	32.1	chlorine	35.5		argon	39.9																					
19	K	20	Ca	21	Ti	22	V	23	Cr	24	Mn	25	Fe	26	Co	27	Ni	28	Cu	29	Zn	30	Ge	31	As	32	Se	33	Br	34	Kr	35					
potassium	39.1	calcium	40.1	scandium	45.0	titanium	47.9	vanadium	50.9	chromium	52.0	manganese	54.9	iron	55.8	nickel	58.7	copper	63.5	zinc	65.4	gallium	69.7	germanium	72.6	arsenic	74.9	selenium	79.0	bromine	79.9						
37	Rb	38	Sr	39	Y	40	Nb	41	Tc	42	Mo	43	Ru	44	Rh	45	Pd	46	Ag	47	Cd	48	In	49	Tl	50	Sn	51	Bi	52	Te	53	I	54	Xe	55	
rubidium	85.5	strontium	87.6	yttrium	88.9	zirconium	91.2	niobium	92.9	technetium	95.9	molybdenum	95.9	ruthenium	101.1	rhodium	102.9	palladium	106.4	silver	107.9	cadmium	112.4	indium	114.8	antimony	121.8	tin	118.7	tellurium	127.6	iodine	126.9				
55	Cs	56	Ba	57–71	Ta	72	Ta	73	Re	74	W	75	Ir	76	Os	77	Pt	78	Hg	79	Pb	80	Tl	81	Bi	82	Po	83	At	84	Rn	85					
caesium	132.9	barium	137.3	lanthanoids	147.5	hafnium	178.5	tantalum	180.9	183.8	186.2	190.2	192.2	186.2	189.5	192.2	195.1	197.0	gold	197.0	mercury	200.6	thallium	204.4	lead	207.2	209.0	bismuth	209.0	polonium	–	astatine	–	radon	–		
87	Fr	88	Ra	89–103	Rf	104	Db	105	Db	106	Bh	107	Rs	108	Bohrium	109	Mt	110	Ds	111	Nh	112	Fl	113	Mc	114	Lv	115	Ts	116	117	Og	118				
francium	–	radium	–	actinoids	–	rutherfordium	–	dubnium	–	seaborgium	–	meitnerium	–	hassium	–	roentgenium	–	damascinium	–	–	–	copernicium	–	–	–	–	–	–	–	–	–	–	–				

lanthanoids	57	La	58	Ce	59	Pr	60	Nd	61	Pm	62	Sm	63	Eu	64	Gd	65	Tb	66	Dy	67	Ho	68	Tm	69	Yb	70	Lu			
	lanthanum	138.9	cerium	140.1	praseodymium	140.9	neodymium	144.4	144.4	140.9	140.9	150.4	152.0	152.0	152.0	157.3	157.3	158.9	158.9	dysprosium	162.5	erbium	167.3	thulium	168.9	ytterbium	173.1	lutetium	175.0		
actinoids	89	Ac	90	Th	91	Pa	92	U	93	Np	94	Pu	95	Am	96	Cm	97	Bk	98	Cf	99	Fm	100	Md	101	No	102	Lr	103		
	actinium	–	thorium	232.0	protactinium	231.0	neptunium	–	uranium	238.0	plutonium	–	americium	–	curium	–	berkelium	–	–	–	californium	–	fermium	–	mendelevium	–	nobelium	–	lawrencium	–	